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Numerical evidence of stationary and breathing concentration patterns in the Oregonator
with equal diffusivities

Jack D. Dockery*
Department of Mathematical Sciences, Montana State University, Bozeman, Montana 59715

Richard J. Field†

Department of Chemistry, The University of Montana, Missoula, Montana 59812
~Received 2 September 1997!

The set of three reaction-diffusion equations describing the time-space behavior of the intermediate chemical
species in the Oregonator model of the Belousov-Zhabotinsky reaction is investigated in an open, gel-disk
reactor in one and two spatial dimensions. Numerical simulations using equal values of the three diffusion
coefficients indicate the presence of solutions corresponding to large-amplitude, apparently stable, stationary
concentration patterns. The requirement of differential transport rates of chemical activator and inhibitor
species for the development of stable patterns is apparently met in this system by differential exchange rates
with the reservoir~s! rather than by differential diffusion rates within the gel-reactor. The characteristics of
these patterns as well as their stability and bifurcation properties are investigated and suggest that their
appearance is dependent upon the existence of bistability in the homogeneous reaction kinetics. The patterns
have an intrinsic wavelength, and one of a particular wave-number destabilizes via a Hopf bifurcation as the
length of the gel-reactor is varied, giving rise to oscillatory breather-solutions past the bifurcation but before
decomposition into a spatially homogeneous state occurs. The relationship of these results to experimental
systems, as well as an analogy to the behavior of biological membranes, is discussed.
@S1063-651X~98!13407-4#

PACS number~s!: 82.70.2y
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I. INTRODUCTION

A. M. Turing @1,2# suggested in 1952 that the interactio
of reaction and diffusion of intermediate species in spatia
distributed, convection-free, reacting chemical systems m
lead under appropriate conditions to spontaneous destab
tion of the spatially homogeneous steady state and forma
of temporally stable, spatially inhomogeneous patterns in
concentrations of these species. The resulting patterns
characterized by an intrinsic spatial wavelength that is de
mined by the reaction-diffusion dynamics of the syste
rather than by its geometry.

The required conditions@3# are ~i! the system is main-
tained far from chemical equilibrium@4#, ~ii ! the chemical
kinetics is of the activator-inhibitor type@2,5,6#, and~iii ! the
diffusion coefficient of the inhibitor species is larger th
that of the activator species by an amount related to
chemical parameters of the system@2,3#. This difference in
diffusion coefficients is difficult to achieve in simple chem
cal systems in which most species diffuse at similar rate

Stationary concentration patterns in principle can be
bilized indefinitely in an open@continuous-flow, unstirred re
actor ~CFUR!# system where the distance from chemic
equilibrium is maintained by the exchange of reactants
products with reservoir~s! while the overall chemical reac
tion occurs@7#. The chemical reaction occurs in a gelle
medium to avoid convective effects. Both the existence
stable patterns and the bifurcation structure of the dynam
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system are dependent upon CFUR flow rates and other
rameters, e.g., the physical dimensions of the open reac

The activator species@2,5,6# is one that is formed in an
autocatalytic process, and the inhibitor species is one tha
derived from the activator but has the effect of inhibiting t
autocatalytic formation of the activator. Such systems n
mally will be bistable for at least some values of the chem
cal concentrations and rate constants; one state features
activator and low inhibitor concentrations, while the oth
features low activator and high inhibitor concentrations. O
cillations often may occur between these two states.

The stabilizing effect on concentration patterns of t
higher transport-rate~e.g., diffusion coefficient or exchange
rate with a reservoir! of the inhibitor relative to the activato
may be understood in the following way. Consider a loc
ized area in which the activator is being autocatalytica
formed and is subsequently leading to formation of the
hibitor species. Autocatalytic formation of the activator
not occurring in the surrounding area. If the transport rate
the inhibitor out of this local area is sufficiently low, then i
concentration will eventually rise to the point where it sto
autocatalytic formation of the activator. However, if the ra
of transport of the inhibitor out of the activated area is s
ficiently high relative to that of the activator, then activat
production continues indefinitely. Furthermore, rapid tra
port of inhibitor into the surrounding area keeps it inactiv
The combination of these two effects stabilizes the localiz
area of activation as well as its surrounding inhibited are

Nearly 40 years elapsed between Turing’s suggestion@1#
and its first experimental verification by Castetset al. @8# and
shortly afterward by Ouyang and Swinney@9# because of the
necessary development of both appropriate chemical r
tions @10,11# and suitable CFUR experimental arrangeme
823 © 1998 The American Physical Society
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824 PRE 58JACK D. DOCKERY AND RICHARD J. FIELD
@7,12,13,14#. The chlorite-iodide-malonic acid~CIMA ! sys-
tem @15,16# is used in these experiments in which a gelle
CFUR is fed the appropriate chemicals from reservoirs. T
required difference in diffusion rates is obtained@16# by us-
ing a gel containing immobilized starch in order to decre
the effective diffusion-rate of the chemically coupled activ
tor speciesI 2/I 2 /I 3

2 by complexingI 3
2.

Several gel-CFUR/reservoir configurations have be
used in the CIMA system, including the thin-strip react
@8,17,18#, the gel-disc reactor@9,19,20#, and the beveled-ge
reactor@21#. The analysis and calculations reported here
ply to a gel-disk reactor, shown schematically in Fig.
which consists of a very thin circle of gel of diameterL
sandwiched between reservoir~s! in contact with one or both
faces. The transport processes involving chemical specie
diffusion within the approximately two-dimensional gel i
self and exchange between the gel-CFUR and the re
voir~s!. All points within the gel are in contact with the res
ervoir~s!, and there are no concentration gradients within
gel-reactor imposed by reservoir configuration, assuming
gel to have no thickness. Concentration patterns deve
within the plane of the gel.

Unambiguous experimental evidence of reactio
diffusion-supported stationary concentration patterns
been obtained to our knowledge only in the CIMA and t
Fe~CN!6

422IO3
22SO3

22 @15,16# systems. In particular, no
experimental evidence has been obtained in the chemic
and mechanistically well-understood@22–24# Belousov-
Zhabotinsky~BZ! reaction@25–27#, whose kinetics are of an
activator-inhibitor nature and in which traveling concent
tion pattern experimental@28–31# and theoretical@32# work
are well developed. The relationship between stationary
traveling concentration patterns has been investigated in
CIMA system@33#. Traveling concentration patterns are t
expected phenomenon when diffusion rates are nearly eq
but no way has yet been found in the BZ system to achi
experimentally the required diffusion-rate difference b
tween activator and inhibitor species for the appearanc
stationary patterns. Such patterns, however, have been f
numerically in the Oregonator model@34,35# of the BZ
chemical dynamics in a closed system with constant reac
concentrations and unequal diffusion coefficients@36–39#.
This state of affairs is unfortunate because the BZ reactio
well suited to experimental work with spatial concentrati
inhomogeneities. It is very robust and reproducible w
sharply autocatalytic kinetics leading to well-defined p

FIG. 1. Schematic diagram of a gel-disc reactor showing
thin-layer reaction medium in contact with two reservoirs and as
ciated transport parameters,kf , kf8 , z0, andz08. Only one reservoir
is considered in this work.
-
e

e
-

n
r

-
,

are

r-

e
e
p

-
s

lly

-

d
he

al,
e
-
of
nd

nt

is

-

terns, and its mechanism is well understood, making the c
nection between experiment and the governing dynamic
clear.

The present work suggests that it may be possible i
gel-disk reactor to adjust the BZ reaction exchange rates
tween the CFUR-gel and its reservoirs so as to achieve, e
with equal diffusion coefficients, the differential transpo
rate of activator and inhibitor required for stationary conce
tration pattern formation. The results obtained imply th
stable patterns can be obtained only if concentrations
flow rates are adjusted such that the homogeneous kine
including the flow, are bistable. Furthermore, the stable p
terns located do not bifurcate directly from the spatially h
mogeneous state and thus can be realized only throug
appropriate perturbation, perhaps photochemical, of
state. Experimental verification of the predicted stable
oscillatory~breather! patterns, apparently related to the pre
ence of a Hopf bifurcation in the partial differential equ
tions, is to hoped for.

II. MODEL EQUATIONS

The Belousov-Zhabotinsky~BZ! reaction@25–27# in the
form used in spatial-pattern work usually is composed
bromate ion$BrO3

2%, malonic acid$CH2~COOH!2%, and a
metal-ion catalyst$Fe~phen!3

31/Fe~phen!3
21% in an '1 M

sulfuric acid $H2SO4% medium. The overall chemical reac
tion is the metal-ion catalyzed oxidation of malonic acid
bromate ion. The chemical mechanism of the BZ react
was elucidated by Field, Ko¨rös, and Noyes@22# in 1972.
This very complex mechanism involving in one form@24# 26
chemical species and 80 chemical reactions can be red
to the five-reaction, three-variable model referred to as
Oregonator@34,35# given below:

A1Y→
k1

X1P, ~1!

X1Y→
k2

P1P, ~2!

A1X1C→
k3

X1X1Z, ~3!

X1X→
k4

A1P, ~4!

Z→
k5

f Y. ~5!

The chemical identities areA[BrO3
2, P[HOBr, X

[HBrO2, Y[Br2, C[Fe~phen!3
21, and Z[Fe~phen!3

31.
The higher concentrations of BrO3

2 and HOBr, assumed to
be the principal reactant and product, respectively, are h
constant in a CFUR by transfer from the reservoirs, leav
the lower-concentration, intermediate species: HBrO2, Br2,
and Fe~phen!3

31, as the dynamic variables. These lowe
concentration species also exchange with the reservoirs,
the exchange rates of Br2 and Fe~phen!3

31 may be affected
by their reservoir concentrations. HBrO2 is not stable enough
to be present in a reservoir. The conservation of Fe atoms
the two forms of the metal-ion catalyst@37,40# requires that
Ctot5total concentration of metal ion5@Fe~phen!3

31#

e
-
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1@Fe~phen!3
21#. The values ofk12k4 are experimentally

defined@34,35#, while the values ofk5 and the stoichiometric
factor f are treated as parameters. The value
@CH2~COOH!2# is absorbed intok5 . The kinetic parameters
@37# used here are k152.5 @H1#2M23 s21, k253.0
3106 @H1# M22 s21, k3540 @H1# M22 s21, k453.0
3103 M21 s21, k550.10 s21, @H1#50.8 M, @A#50.06 M,
Ctot52.331023 M, and f 50.43.

Using the scaled concentrations,x, y, z, andc defined by

x5~k1A/k2!/@X#, y5~k3A/k2!/@Y#,

z5$k1k3A2/~k2 k5!%/@Z#,

and

c5$k1k3A2/~k2k5!%/@Ctot#,

and the dimensionless parameterss, q, w, andt defined by

s5~k3 /k1!1/2, q52k1k4 /k2k3 , w5k5 /~A$k1k3%
1/2!

and

t5Time$A~k1k5!1/2%,

the mass-action, well-mixed, spatially homogeneo
chemical-kinetics equations become

dx/dt5 f ~x,y,z!5s@y2xy1x~12z/c!2qx2#,

dy/dt5g~x,y,z!5~2y2xy1 f z!/s, ~6!

dy/dt5h~x,z!5w@x~12z/c!2z#.

Addition of Fick’s Law diffusion terms within the gel an
the scaled flow term,kf , for the transfer ofX, Y, and Z
between the gel-CFUR and the reservoir~s! ~Fig. 1! leads to
Eq. ~7!,

]x

]t
5D

]2x

]r 2 1 f ~x,y,z!2kfx,

]y

]t
5D

]2y

]r 2 1g~x,y,z!2kfy, ~7!

]z

]t
5D

]2z

]r 2 1h~x,z!1kf~zr2z!.

The additional scalings D5D8/@A(k1k5)1/2L2# with
D851.031025 cm2/s andr 5r 8/L are introduced in Eq.~7!
with the spatial coordinater 8 and the reactor lengthL in cm.
The scaled spatial coordinater runs between 0 and 1 in thes
calculations with Neumann~no-flux! boundary conditions
imposed at the endpoints. The parameterzr is the reservoir
concentration ofZ. It is assumed thatxr5yr50.

We seek stable, spatially inhomogeneous solutions to
~7!, i.e., solutions to Eq.~8!,
f

s

q.

D
]2x

]r 2 1 f ~x,y,z!2kfx50,

D
]2y

]r 2 1g~x,y,z!2kfy50, ~8!

D
]2z

]r 2 1h~x,z!1kf~zr2z!50.

The variablesx, y, andz have been further scaled in the
numerical work presented below by multiplying by 1000
100, and 1000, respectively. Lettingx, y, andz also repre-
sent these rescaled variables, the reaction kinetics equat
become Eq.~9!.

f ~x,y,z!5s@y/102100xy1x~121000z/c!21000qx2#,

g~x,y,z!5~2y21000xy110f z!/s, ~9!

h~x,z!5w@x~121000z/c!2z#.

III. NUMERICAL RESULTS

The major bifurcation parameters in the well-mixed rea
tion kinetics given by Eq.~6! are k5 and f . All results re-
ported here are for the chemical parameters specified ab
with k550.10 s21 and f 50.43, for which Eq.~6! is bistable,
there being two stable and one unstable steady states. B
bility in the reaction kinetics seems to be necessary for a
pearance of the stable, spatially inhomogeneous concen
tion patterns described below in the spatially distribute

FIG. 2. L2 norm of concentration for an unstable, spatially ho
mogeneous solution and three stationary-pattern solutions to Eq.~8!
obtained by continuation methods forzr52.2 andkf50.049 as the
domain sizeL is varied. The lowest, solid line is the unstable
spatially homogeneous state, and the dashed line is the branc
unstable Turing patterns bifurcating from it. The two solid upp
lines show a fold bifurcation at which a single spatially inhomog
neous~pattern! solution appears and immediately separates into tw
others, a fold bifurcation. The stability of the two highest-norm
patterns is as indicated in Fig. 5. The vertical line indicates t
valueL50.3 cm for which Fig. 3 is calculated.
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826 PRE 58JACK D. DOCKERY AND RICHARD J. FIELD
reaction-diffusion system, Eq.~7!, as has been found in pre
vious closed system (kf50) work with unequal diffusion
coefficients@36,37#. This fact must guide experiments in th
BZ system designed to verify the results obtained here.

Numerical investigation of Eq.~7! is begun using its time-
independent form, Eq.~8!. The physically important bifurca
tion parameters in the open system arekf andzr . Spatially
inhomogeneous solutions are found and characterized for

FIG. 3. Bifurcation structure of Eq.~8! in the kf2zr plane at
L50.03 cm. The solid line is the locus of points for which the fo
bifurcation shown in Fig. 2 occurs. The dashed line is the locus
points for which the highx-low y steady state of Eq.~6! becomes
unstable via a Hopf bifurcation. Equation~6! is bistable below and
monostable above this line. The star indicates the point for wh
Fig. 2 is calculated.

FIG. 4. Stability diagram in thezr2kf plane for L50.03 cm
resulting from linearization of Eq.~8! about spatially inhomoge
neous solutions obtained by Newton’s method. Stable, spatially
homogeneous solutions are found only within the shaded reg
whose boundary is a locus of points for which the linearized sys
has purely imaginary eigenvalues, indicating the possibility o
Hopf bifurcation in the full PDE system, Eq.~7!. The Hopf and
Fold bifurcation lines from Figs. 2 and 3 are reproduced.
q.

~8! in two ways.~i! Numerical continuation methods@42,43#
are used to determine the existence of and to characte
spatially inhomogeneous steady state solutions to Eq.~8!. ~ii !
Equation ~8! is discretized using a second-order, centr
difference method@41#. The resulting equations then ar
solved using Newton’s method with a spatially inhomog
neous initial spatial distribution ofx, y, andz. Equation~8!
may then be linearized about the patterns so obtained
their stability as stationary solutions to Eq.~7! investigated.
The results thus obtained are verified by numerical solut
of Eq. ~7! itself.

Figures 2 and 3 summarize the results of the continua
calculations based on Eq.~8!. The existence and characteri
tics of spatial concentration patterns depend upon the va
of L as well askf andzr . There are three spatially uniform
steady states for all physically reasonable, positive value
kf andzr . They correspond to the three steady states of
~6!. Two of these spatially uniform states forkf50, those
corresponding to the bistable highx-low y and the low
x-high y states in the reaction kinetics, Eq.~6!, are stable.
The third state with intermediate values ofx andy is always
unstable. One, two, or three spatially inhomogeneous s
tions also have been located. Figure 2 characterizes the
istence of these solutions to Eq.~8! and their amplitude in
the L2 norm @44# as L varies and withzr52.2 and kf
50.049. No spatially inhomogeneous solution is found
sufficiently small values ofL. However, the steady state wit
intermediate values ofx andy ~the lowest solid line in Fig.
2! undergoes a classic Turing bifurcation@1,2# asL increases
at which the homogeneous state becomes unstable relati
a cosinelike pattern that appears and grows in amplitudeL
increases further. This is the dashed curve in Fig. 2. It can
shown that this pattern is unstable locally near the bifur

f

h

n-
n,
m
a

FIG. 5. Dependence on domain size,L, of the stability of four
single and multilayer patterns forkf50.049 andzr52.2. Each
curve is the Fold bifurcation as in Fig. 2 for two patterns havi
reflective symmetry, containing 1, 2, 3, or 4 layers, respective
and growing from an instability of the form cosnp with n equal to
1, 2, 3, or 4. The lower pattern is unstable~dash-dot line! in all
cases. The upper pattern in each case is stable~solid line! only over
a certain range of domain length, which increases with the num
of layers.
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FIG. 6. Evolution of square-wave initial conditions~dashed line! to an eight-layer pattern~solid line! for kf50.049,zr52.2 andL
50.27 cm.~a! The value ofx, ~b! the value ofy, ~c! the value ofz.
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tion point because the spatially homogeneous solution it
furcates from is unstable. We have found numerically t
this branch of solutions is indeed unstable for all values ofL,
seeming to tend to an orbit homoclinic to the lowx-high y,
spatially homogeneous state asL→`.

The fold bifurcation illustrated in Fig. 2 occurs at a som
what higher value ofL5Lc . A second spatially inhomoge
neous solution appears and immediately separates into a
of spatially inhomogeneous solutions asL increases beyond
Lc . These states apparently are not associated with any
tially homogeneous state. Thus there are three pairs of
tially inhomogeneous solutions, each having reflective sy
metry, at sufficiently large values ofL, e.g., atL50.03 cm,
as indicated by the vertical line in Fig. 2. All solutions fo
this value ofL are found in the Newton’s method calcul
tions to be single-layer patterns containing one-half of a c
centration peak similar to one-half cosine wave. With Ne
mann boundary conditions, ifx(r ), y(r ), z(r ) is a solution,
then so isx(L2r ), y(L2r ), z(L2r ). These two patterns
are counted as one. Similar symmetry is observed in mu
layer patterns appearing at larger values ofL.
i-
t

-

air

pa-
a-
-

-
-

i-

The upper branch of the pair of spatially inhomogeneo
solutions resulting from the fold bifurcation seems to tend
a heteroclinic orbit between the highx-low y and the low
x-high y spatially uniform states asL→`. The lower branch
seems to correspond to an orbit homoclinic to the highx-low
y spatially uniform state asL→`. Numerical results de-
scribed below suggest that the lower solution is always
stable, while the upper solution is stable for appropriate v
ues of L. The high x-low y and low x-high y, spatially
homogeneous states continue to exist for these values okf
andzr but are only locally stable.

Figure 3 illustrates the bifurcation structure of Eq.~8! in
thekf2zr plane withL50.03 cm, the point indicated by th
vertical line in Fig. 2. The star in Fig. 3 indicates the valu
of kf and zr for which Fig. 2 is constructed. The dashe
~Hopf! line in Fig. 2 is the locus of points for which the hig
x-low y spatially homogeneous solution to Eq.~6! loses its
stability via a Hopf bifurcation. Below this curve the wel
stirred chemical kinetics, Eq.~6!, is bistable and there ar
two solutions corresponding to locally stable, spatially u
form states. Detailed investigations were not carried
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828 PRE 58JACK D. DOCKERY AND RICHARD J. FIELD
above the Hopf curve where Eq.~6! has only one stable
steady state. The Fold~solid! curve indicates the locus o
points at which the turning point in Fig. 2 occurs. Two sp
tially inhomogeneous solutions, including the Turing so
tion, are present at this point. The region with three spati
inhomogeneous solutions~corresponding to Fig. 2 atL
greater thanLc where the fold bifurcation occurs! lies be-
tween the Hopf and the Fold curves. Only the Turing so
tion exists below the Fold line. Spatially inhomogeneous p
terns exist throughout the region bounded by the Hopf
the Fold lines. However, stable patterns are found only i
portion of this region.

The spatially inhomogeneous solutions located by c
tinuation methods can be computed by solution of the s
tially discretized version of Eq.~8! using Newton’s method
with iteration stopped when the residual is of the order
10210. The stability of these solutions is investigated
computing the eigenvalues of the linearization of Eq.~8!
about them. The EISPACK routines@45# as well as iterative
techniques@46# are used to do this. The numerical resu
obtained indicate that the Fold lines in Figs. 2 and 3 res
from a saddle-node bifurcation in which an eigenvalue of
linearization of Eq.~8! about the appropriate pattern is ide
tically zero. These results are represented in Fig. 4, where
Hopf and Fold lines from Fig. 3 also are reproduced. Sta
spatially inhomogeneous solutions are found only within
shaded region between the Hopf and Fold curves.
boundary of this region is a curve of Hopf points for th
linearization of the discretized version of Eq.~8! where the
eigenvalues are purely imaginary. This indicates the po
bility of a Hopf bifurcation for the PDE system, Eq.~7!, such
as occurs in analogous, closed-system activator-inhib
models if the diffusion coefficient of the inhibitor is large
than that of the activator@47#. Temporally oscillatory, spa
tially inhomogeneous solutions referred to as breather
terns@47# may occur in this case close to the Hopf bifurc
tion. We describe below numerical breather solutions that
strong evidence for the existence of such a Hopf bifurcat
in Eq. ~7!.

The existence and stability of spatially inhomogeneo
solutions more complex than only a single-layer, i.

FIG. 7. Combined concentration profiles from Fig. 6.
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multilayer patterns with more than one concentration pe
also has been investigated as a function of the domain len
L. These results are displayed in Fig. 5 for 0,L,0.1 cm
with kf50.049 andzr52.2. The fold bifurcation is again
apparent, but the lower-amplitude, spatially inhomogene
solution is always unstable. Patterns with one to four lay
are found forL<0.1 cm, but it appears that any number
layers can be obtained for large enough values ofL. TheL2
norm of these patterns increases with the number of lay
indicating larger spatial concentration inhomogeneities. E
pattern is stable only in a rangeL0,L,L1 with the ex-
change of stability again seeming to be via a Hopf bifurc
tion and to be very regular in that if a single-layer pattern
stable in the rangeL0,L,L1 , then then-layer pattern is
stable in the rangenL0,L,nL1 .

These results from continuation and stability analyses
the time-independent Eq.~8! are verified and extended b
numerical solution of the PDE system, Eq.~7!. The second-
order spatial derivatives are discretized using second-o
differences on a grid ofn points. This results in a large
system of 3n ordinary differential equations which ar
solved numerically using the stiffly stable numerical integ
tors ODE15S@48,49# and LSODE@50#. A spatial grid of 250
spatial points is normally used, but many calculations w
500 or 1000 points over the same spatial domain yield
sentially identical results. It is assumed that a stable,
changing solution has been achieved when the time der
tives are less than 10210. The stability of spatially
inhomogeneous solutions to Eq.~8! obtained by Newton’s
method is verified by perturbing them by addition of 1
random noise before use as the initial condition for nume
cal solution of Eq.~7!. All solutions for which the linearized
version of the ODE Eq.~8! has a stable spectrum of eige
values are found to be numerically stable solutions to
PDE, Eq.~7!.

We also have investigated numerically the evolution
initial square-wave initial concentration profiles given by E
~9! to apparently stable spatially inhomogeneous pattern

x~r ,0!5xr1 max„cos~pmr!,0…1xr0 max„sin~pmr!,0…,

y~r ,0!5yr1 max„cos~pmr!,0…1xr0 max„sin~pmr!,0…,

z~r ,0!5zr1 max„cos~pmr!,0…1zr0 max„sin~pmr!,0….

The parametersxr0 andxr1 are the respective values ofx for
the two steady states of the bistable reaction kinetics, Eq.~6!,
and similarly fory and z. Integration of Eq.~7! leads to a
stable spatial pattern if the spatial interval,L, can support a
pattern of wave numberm. Figure 6 shows the initial and
final concentration profiles for such a calculation form54
and with L50.27 cm, kf50.049, andzr52.2. Figure 7
shows the complete eight-layer pattern, which is very sim
to one found using the same model in a closed systemkf
50), but withDz /(Dx5Dy).2. Thus it appears that differ
ential transport of the inhibitor compared to the activator
exchange with the reservoir can substitute for differen
transport via diffusion within the gel.

The previous indication of the existence of a Hopf bifu
cation for the PDE system also can be investigated by
merical integration. Figure 8 shows the numerical evolut



pparent.
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FIG. 8. Value ofx vs r as dimensionless time,t, evolves for a two-layer breather solution withkf50.049,zr52.2, andL50.150 cm.
The value ofL used is considerably above the bifurcation point indicated in Fig. 5 for Mode 2 in order to make the movement more a
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of Eq. ~7! for a value ofL past that where Hopf bifurcation
occurs,LH , as the domain length is increased. The two-la
initial concentration profile computed from Eq.~8! by New-
ton’s method is unstable but does not decompose to a
tially homogeneous state. The profile instead behaves as
traveling waves that approach and move away from e
other with a period of about 153 in dimensionless time un
This period agrees well with that computed from the eig
values obtained by linearization of Eq.~8!, even though the
value ofL used in this calculation is considerably larger th
LH . This type of phenomenon has been investigated@47# in
another activator-inhibitor system withD inhibitor /Dactivator
.1 where the connection to the Hopf bifurcation can
shown precisely. This phenomenon may be related to sm
amplitude, sinusoidal oscillations observed in a very sim
well-mixed, CSTR model@35# near a Hopf bifurcation and to
the formation of a stationary pattern in this model@37# with
kf50 via the interaction and eventual stopping of traveli
waves.

Stability analysis of the linearized version of Eq.~8! in-
dicates that there likely is also a Hopf bifurcation asL is
decreased. However, if there are periodic solutions near
change of stability such as occur~Fig. 8! for values ofL
beyond the high end of the range of pattern stability, th
they must occur only over a very narrow range ofL. Thus
the stable, two-layer pattern that occurs forkf50.049, zr
52.2, andL50.05 cm becomes unstable forL50.04 cm,
evolving into two traveling waves that collide and eventua
coalesce into the highx-low y, spatially homogeneou
steady state, as is shown in Fig. 9.

The above results in one spatial dimension can be
r

a-
wo
h
.
-

e
ll-
r
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n

x-

trapolated to suggest the presence of a stable pattern in
spatial dimensions forkf50.049, zr52.2 on a square do
main with L50.07 cm. This pattern has been found usi
Newton’s method and the two-dimensional version of E
~8!. It is displayed in Fig. 10. The eigenvalue spectrum
this pattern computed via the iterative methods descri
above is stable.

IV. CONCLUSION

Solutions corresponding to stable, stationary, spatial c
centration patterns exist to a set of reaction-diffusion eq
tions arising from the Oregonator model of the BZ reactio
The physical configuration of the system modeled is an op
thin-layer, gelled reaction medium~Fig. 1! in contact with
reservoirs over its two large surfaces, with which it e
changes various chemical species. These patterns are s
even when the diffusion coefficients of all reactive interm
diates are equal. They are not a Turing structure@1# because
they do not bifurcate from the spatially homogeneous st
they instead are isolated and must be reached via an ap
priate perturbation of the spatially homogeneous state.
called breather solutions also are found in which a spa
pattern persists indefinitely, but the size of the concentra
inhomogeneities oscillates. They occur just outside the
gion of stability of the stationary patterns. Breathing patte
have been observed previously@51# in an enzyme-kinetics
model and referred to there as pulsars. A breathing conc
tration inhomogeneity has been observed experiment
@52# in a gel-disc reactor with the pH-drive
Fe~CN!6

42-IO3
2-SO3

22 ~FIS! chemical oscillator@53–55#,



a
d

830 PRE 58JACK D. DOCKERY AND RICHARD J. FIELD
FIG. 9. Collapse in dimensionless time,t, of an unstable, two-layer pattern~x vs r ! by collision of two traveling waves leading to
spatially homogeneous solution forkf50.049,zr52.2, andL50.040 cm. The value ofL used is just below the bifurcation point indicate
for Mode 2 in Fig. 5.

FIG. 10. Value ofx for a stable two-dimensional pattern on a square domain withL50.07 cm,kf50.049, andzr52.2.
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again apparently involving bistability@53# and near a bifur-
cation @52,56,57#. The high diffusivity of H1 may allow for
substantial differences of diffusion coefficients in the F
system. The precise relationship of these observations to
present result is not yet established@56,57#, especially con-
cerning the exact bifurcation structure associated with
appearance of patterns, but there likely is a close relat
ship. There is an interesting interaction of traveling wav
and stationary patterns in the FIS system@37,52,55#, and
some patterns are approached via a perturbation@55#.

We believe that the patterns located here will appea
the BZ reaction under suitable experimental conditions. T
are robust in our calculations and depend mainly upon
existence of bistability in the chemical kinetics, a pheno
enon that is well-known in the BZ reaction@58#. Hale et al.
@59# recently have reported very similar pattern-formati
with all-equal diffusion coefficients for the cubic
autocatalator model@27,60# also dependent upon bistabilit
and in the same open physical configuration, suggesting
the phenomenon is related to the existence of bistability
activator-inhibitor kinetics@52,53,56,57# in this physical
configuration rather than to the exact form of the kine
equations. We suggest that it will be necessary to carry
these experiments with bromomalonic acid as well as Ce~IV!
in the reservoir~s! in order to control the effective value off ,
assumed to be 0.43 in the present calculations. A more c
plex, eleven-variable model of the BZ reaction due to Gy¨r-
gyi et al. @35,61,62# and designed to reproduce the role
bromomalonic acid in the origin of chaos in the BZ reacti
@63# has been quite successful@64# and would seem to be
useful in locating the regions of bistability necessary for
appearance of these patterns. One would use this mode
l

hy

din
he

e
n-
s

n
y
e
-

at
n

ut

-

e
a

simple approach to look for bistability in a well-mixed CST
as the concentrations of the principal reactants in the CS
and the concentrations of Ce~IV! and bromomalonic acid in
the feed streams are varied. The calculations reported
would be reproduced with this model in a more compl
approach to determining accurate experimental paramete
will be necessary to reach the patterns described here
perturbation because of their isolation from the spatially h
mogeneous state. This most likely can be done photoche
cally @65#.

Finally, this model, as pictured in Fig. 1, may have som
significance to the process of channeling or other coopera
structural changes in a cell membrane@66#. It consists of a
membrane in contact with reservoirs on either side, perh
representing the inside and outside of the cell. The pattern
could correspond to the appearance of channels through
membrane or to some other structural change, mediated
the concentration of some species, analogous tozr , either
inside or outside of the cell. Patterned and homogene
spatial states coexist for suitable values ofzr , and the system
can be perturbed from one state to the other by a spat
inhomogeneous perturbation, perhaps the binding to
membrane of an agonist, e.g., a ligand-gated channel@67#.
Only the spatially homogeneous state will exist for oth
values ofzr , and the membrane then will not respond
such a perturbation with a cooperative structural change
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